317 research outputs found

    More frequent moments in the climate change debate as emissions continue

    Get PDF
    Recent years have witnessed unprecedented interest in how the burning of fossil fuels may impact on the global climate system. Such visibility of this issue is in part due to the increasing frequency of key international summits to debate emissions levels, including the 2015 21st Conference of Parties meeting in Paris. In this perspective we plot a timeline of significant climate meetings and reports, and against metrics of atmospheric greenhouse gas changes and global temperature. One powerful metric is cumulative CO2 emissions that can be related to past and future warming levels. That quantity is analysed in detail through a set of papers in this ERL focus issue. We suggest it is an open question as to whether our timeline implies a lack of progress in constraining climate change despite multiple recent keynote meetings—or alternatively—that the increasing level of debate is encouragement that solutions will be found to prevent any dangerous warming levels

    A steep road to climate stabilization: The only way to stabilize Earth’s climate is to stabilize the concentration of greenhouse gases in the atmosphere, but future changes in the carbon cycle might make this more difficult than has been thought.

    Get PDF
    SupplementInternational audienceThe only way to stabilize Earth’s climate is to stabilize the concentration of greenhouse gases in the atmosphere, but future changes in the carbon cycle might make this more difficult than has been thought

    Carbon-concentration and carbon-climate feedbacks in CMIP6 models, and their comparison to CMIP5 models

    Get PDF
    Results from the fully-, biogeochemically-, and radiatively-coupled simulations in which CO2 increases at a rate of 1% per year (1pctCO2) from its pre-industrial value are analyzed to quantify the magnitude of two feedback parameters which characterize the coupled carbon-climate system. These feedback parameters quantify the response of ocean and terrestrial carbon pools to changes in atmospheric CO2 concentration and the resulting change in global climate. The results are based on eight comprehensive Earth system models from the fifth Coupled Model Intercomparison Project (CMIP5) and eleven models from the sixth CMIP (CMIP6). The comparison of model results from two CMIP phases shows that, for both land and ocean, the model mean values of the feedback parameters and their multi-model spread has not changed significantly across the two CMIP phases. The absolute values of feedback parameters are lower for land with models that include a representation of nitrogen cycle. The sensitivity of feedback parameters to the three different ways in which they may be calculated is shown and, consistent with existing studies, the most relevant definition is that calculated using results from the fully- and biogeochemically-coupled configurations. Based on these two simulations simplified expressions for the feedback parameters are obtained when the small temperature change in the biogeochemically-coupled simulation is ignored. Decomposition of the terms of these simplified expressions for the feedback parameters allows identification of the reasons for differing responses among ocean and land carbon cycle models

    Global Carbon Budget 2021

    Get PDF
    Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate is critical to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize datasets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (E-FOS) are based on energy statistics and cement production data, while emissions from land-use change (E-LUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly, and its growth rate (G(ATM)) is computed from the annual changes in concentration. The ocean CO2 sink (S-OCEAN) is estimated with global ocean biogeochemistry models and observation-based data products. The terrestrial CO2 sink (S-LAND) is estimated with dynamic global vegetation models. The resulting carbon budget imbalance (B-IM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as +/- 1 sigma. For the first time, an approach is shown to reconcile the difference in our E-LUC estimate with the one from national greenhouse gas inventories, supporting the assessment of collective countries' climate progress. For the year 2020, E-FOS declined by 5.4 % relative to 2019, with fossil emissions at 9.5 +/- 0.5 GtC yr(-1) (9.3 +/- 0.5 GtC yr(-1) when the cement carbonation sink is included), and E-LUC was 0.9 +/- 0.7 GtC yr(-1), for a total anthropogenic CO2 emission of 10.2 +/- 0.8 GtC yr(-1) (37.4 +/- 2.9 GtCO(2)). Also, for 2020, G(ATM) was 5.0 +/- 0.2 GtC yr-1 (2.4 +/- 0.1 ppm yr(-1)), S-OCEAN was 3.0 +/- 0.4 GtC yr(-1), and S-LAND was 2.9 +/- 1 GtC yr(-1), with a B-IM of -0.8 GtC yr(-1). The global atmospheric CO2 concentration averaged over 2020 reached 412.45 +/- 0.1 ppm. Preliminary data for 2021 suggest a rebound in E-FOS relative to 2020 of +4.8 % (4.2 % to 5.4 %) globally. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959-2020, but discrepancies of up to 1 GtC yr(-1) persist for the representation of annual to semi-decadal variability in CO2 fluxes. Comparison of estimates from multiple approaches and observations shows (1) a persistent large uncertainty in the estimate of land-use changes emissions, (2) a low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) a discrepancy between the different methods on the strength of the ocean sink over the last decade. This living data update documents changes in the methods and datasets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this dataset (Friedlingstein et al., 2020, 2019; Le Quere et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at (Friedlingstein et al., 2021)

    European land CO2 sink influenced by NAO and East-Atlantic Pattern coupling

    Get PDF
    Large-scale climate patterns control variability in the global carbon sink. In Europe, the North-Atlantic Oscillation (NAO) influences vegetation activity, however the East-Atlantic (EA) pattern is known to modulate NAO strength and location. Using observation-driven and modelled data sets, we show that multi-annual variability patterns of European Net Biome Productivity (NBP) are linked to anomalies in heat and water transport controlled by the NAO-EA interplay. Enhanced NBP occurs when NAO and EA are both in negative phase, associated with cool summers with wet soils which enhance photosynthesis. During anti-phase periods, NBP is reduced through distinct impacts of climate anomalies in photosynthesis and respiration. The predominance of anti-phase years in the early 2000s may explain the European-wide reduction of carbon uptake during this period, reported in previous studies. Results show that improving the capability of simulating atmospheric circulation patterns may better constrain regional carbon sink variability in coupled carbon-climate models

    Quantifying uncertainties of permafrost carbon–climate feedbacks

    Get PDF
    The land surface models JULES (Joint UK Land Environment Simulator, two versions) and ORCHIDEE-MICT (Organizing Carbon and Hydrology in Dynamic Ecosystems), each with a revised representation of permafrost carbon, were coupled to the Integrated Model Of Global Effects of climatic aNomalies (IMOGEN) intermediate-complexity climate and ocean carbon uptake model. IMOGEN calculates atmospheric carbon dioxide (CO2) and local monthly surface climate for a given emission scenario with the land–atmosphere CO2 flux exchange from either JULES or ORCHIDEE-MICT. These simulations include feedbacks associated with permafrost carbon changes in a warming world. Both IMOGEN–JULES and IMOGEN–ORCHIDEE-MICT were forced by historical and three alternative future-CO2-emission scenarios. Those simulations were performed for different climate sensitivities and regional climate change patterns based on 22 different Earth system models (ESMs) used for CMIP3 (phase 3 of the Coupled Model Intercomparison Project), allowing us to explore climate uncertainties in the context of permafrost carbon–climate feedbacks. Three future emission scenarios consistent with three representative concentration pathways were used: RCP2.6, RCP4.5 and RCP8.5. Paired simulations with and without frozen carbon processes were required to quantify the impact of the permafrost carbon feedback on climate change. The additional warming from the permafrost carbon feedback is between 0.2 and 12 % of the change in the global mean temperature (ΔT) by the year 2100 and 0.5 and 17 % of ΔT by 2300, with these ranges reflecting differences in land surface models, climate models and emissions pathway. As a percentage of ΔT, the permafrost carbon feedback has a greater impact on the low-emissions scenario (RCP2.6) than on the higher-emissions scenarios, suggesting that permafrost carbon should be taken into account when evaluating scenarios of heavy mitigation and stabilization. Structural differences between the land surface models (particularly the representation of the soil carbon decomposition) are found to be a larger source of uncertainties than differences in the climate response. Inertia in the permafrost carbon system means that the permafrost carbon response depends on the temporal trajectory of warming as well as the absolute amount of warming. We propose a new policy-relevant metric – the frozen carbon residence time (FCRt) in years – that can be derived from these complex land surface models and used to quantify the permafrost carbon response given any pathway of global temperature change

    Do Emergent Constraints on Carbon Cycle Feedbacks hold in CMIP6?

    Get PDF
    Emergent constraints on carbon cycle feedbacks in response to warming and increasing atmospheric CO2 concentration have previously been identified in Earth system models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP) Phase 5. Here we examine whether two of these emergent constraints also hold for CMIP6. The spread of the sensitivity of tropical land carbon uptake to tropical warming in an idealized simulation with a 1% per year increase of atmospheric CO2 shows only a slight decrease in CMIP6 (-52 ± 35 GtC/K) compared to CMIP5 (-49 ± 40 GtC/K). For both model generations, the observed interannual variability in the growth rate of atmospheric CO2 yields a consistent emergent constraint on the sensitivity of tropical land carbon uptake with a constrained range of -37 ± 14 GtC/K for the combined ensemble (i.e., a reduction of ~30% in the best estimate and 60% in the uncertainty range relative to the multi-model mean of the combined ensemble). A further emergent constraint is based on a relationship between CO2 fertilization and the historical increase in the CO2 seasonal cycle amplitude in high latitudes. However, this emergent constraint is not evident in CMIP6. This is in part because the historical increase in the amplitude of the CO2 seasonal cycle is more accurately simulated in CMIP6, such that the models are all now close to the observational constraint

    Climate-induced interannual variability of marine primary and export production in three global coupled climate carbon cycle models

    Get PDF
    © 2008 Author(s). This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 5 (2008): 597-614, doi:10.5194/bg-5-597-2008Fully coupled climate carbon cycle models are sophisticated tools that are used to predict future climate change and its impact on the land and ocean carbon cycles. These models should be able to adequately represent natural variability, requiring model validation by observations. The present study focuses on the ocean carbon cycle component, in particular the spatial and temporal variability in net primary productivity (PP) and export production (EP) of particulate organic carbon (POC). Results from three coupled climate carbon cycle models (IPSL, MPIM, NCAR) are compared with observation-based estimates derived from satellite measurements of ocean colour and results from inverse modelling (data assimilation). Satellite observations of ocean colour have shown that temporal variability of PP on the global scale is largely dominated by the permanently stratified, low-latitude ocean (Behrenfeld et al., 2006) with stronger stratification (higher sea surface temperature; SST) being associated with negative PP anomalies. Results from all three coupled models confirm the role of the low-latitude, permanently stratified ocean for anomalies in globally integrated PP, but only one model (IPSL) also reproduces the inverse relationship between stratification (SST) and PP. An adequate representation of iron and macronutrient co-limitation of phytoplankton growth in the tropical ocean has shown to be the crucial mechanism determining the capability of the models to reproduce observed interactions between climate and PP.This work was supported by the EU grants 511106-2 (FP6 RTD project EUR-OCEANS) and GOCE-511176 (FP6 RTP project CARBOOCEAN) by the European Commission. TLF and FJ also acknowledge support from the Swiss National Science Foundations. SCD and MJB received support from NASA NNG06G127G

    Quantifying non-CO2 contributions to remaining carbon budgets

    Get PDF
    The IPCC Special Report on 1.5 °C concluded that anthropogenic global warming is determined by cumulative anthropogenic CO2 emissions and the non-CO2 radiative forcing level in the decades prior to peak warming. We quantify this using CO2-forcing-equivalent (CO2-fe) emissions. We produce an observationally constrained estimate of the Transient Climate Response to cumulative carbon Emissions (TCRE), giving a 90% confidence interval of 0.26–0.78 °C/TtCO2, implying a remaining total CO2-fe budget from 2020 to 1.5 °C of 350–1040 GtCO2-fe, where non-CO2 forcing changes take up 50 to 300 GtCO2-fe. Using a central non-CO2 forcing estimate, the remaining CO2 budgets are 640, 545, 455 GtCO2 for a 33, 50 or 66% chance of limiting warming to 1.5 °C. We discuss the impact of GMST revisions and the contribution of non-CO2 mitigation to remaining budgets, determining that reporting budgets in CO2-fe for alternative definitions of GMST, displaying CO2 and non-CO2 contributions using a two-dimensional presentation, offers the most transparent approach
    • 

    corecore